Posted in | News | LEDs | Display

Market Research Report Released on Barrier Films for Flexible Electronics

Barrier Films for Flexible Electronics: Needs Players & Opportunities

The biggest opportunity for OLED displays and organic photovoltaics is when these devices can be flexible, allowing them to be more robust, versatile and made in large areas compared to conventional displays and photovoltaics. However, many of the materials used in OLED displays and organic photovoltaics are sensitive to the environment, limiting their lifetime. These materials can be protected using substrates and barriers such as glass and metal, but this results in a rigid device and does not satisfy the applications demanding flexible devices. Plastic substrates and transparent flexible encapsulation barriers can be used, but these offer little protection to oxygen and water, resulting in the devices rapidly degrading.

In order to achieve device lifetimes of tens of thousands of hours, water vapor transmission rates (WVTR) must be 10-6 g/m2/day, and oxygen transmission rates (OTR) must be < 10-3 cm3/m2/day. For Organic Photovoltaics, the required WVTR is not as stringent as OLEDs require but is still very high at a level of 10-5 g/m2/day. These transmission rates are several orders of magnitude smaller than what is possible using any plastic substrate, and they can also be several orders of magnitude smaller than what can be measured using common equipment (MOCON) designed for this purpose. For these (and other) reasons, there has been intense interest in developing transparent barrier materials with much lower permeabilities.

This concise and unique report from IDTechEx gives an in-depth review to the needs, emerging solutions and players. It addresses specific topics such as:

  • Companies which are active in the development of high barrier films and their achievements on the field to date.

  • Surface smoothness and defects (such as cracks and pinholes) and the effect that these characteristics would have on the barrier behavior of the materials studied.

  • Traditional methods of measurement of permeability are reaching the end of their abilities. The MOCON WVTR measurement device, which has been an industry standard, cannot give adequate measurements at the low levels of permeability required for Organic Photovoltaics and OLEDs. Other methods of measurement and equipment developed are being discussed.

  • Forecasts for OLEDs and OPV, in order to understand the influence that the development of flexible barriers would have at the mass deployment and adoption of these technologies.

For those developing flexible electronics, seeking materials needs and opportunities, this is a must-read report.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.