Posted in | News | Imaging

Measuring Objects Strictly from Photographs

Imagine landing on the Moon, climbing down the ladder of your spacecraft, and looking around the harsh lunar landscape - to see another, older spacecraft standing only 200 yards away.

That's exactly what happened in November 1969, when astronauts Pete Conrad and Alan Bean stepped out of the Apollo 12 lunar module. There, within walking distance on the edge of a small crater, stood Surveyor 3, an unmanned U.S. spacecraft that had landed in April 1967.

Apollo 12's landing site had been chosen deliberately near Surveyor 3. The little lander had spent two and a half years exposed to the worst the Moon had to offer: harsh vacuum, intense cosmic radiation, meteoritic bombardment, extreme temperature swings. Back on Earth, NASA engineers wanted to know how metals, glass and other spacecraft building materials held up to that kind of punishment. Inspecting Surveyor 3 first hand seemed a good way to find out.

On their second four-hour EVA, Bean and Conrad walked over to Surveyor 3, took dozens of photographs and measurements, and began snipping off parts of metal tubing and electrical cables. They retrieved a camera. The very last thing they removed was a small scoop at the end of Surveyor's extendable arm, which had dug into the dry moon dust and gravel to make mechanical measurements of lunar soil.

The little scoop, the camera, and other artifacts returned to Earth were analyzed and then put in storage. At some point in the intervening four decades, the scoop, owned by Johnson Space Center, was transferred on permanent loan to a space museum in Kansas. And there matters quietly lay ... until recently when researchers at NASA's Glenn Research Center (GRC) realized that that little scoop could hold big secrets.

Namely, the secrets of digging on the Moon.

NASA is returning to the Moon with plans to establish an outpost--and this will inevitably require some digging. The rocky, dusty lunar soil or "regolith" contains many of the natural resources humans need to live. For instance, there is plentiful oxygen bound up in ordinary moon rocks and, in polar regions, deposits of frozen water may lie hidden in the soil of shadowed craters. All that's required is a little excavation.

But how? Lunar regolith is not like terrestrial soil. Here on Earth, the sand beneath our feet is shaped by a combination of biological and meteorological forces. Terrestrial soil is moist, rounded by weather, and utterly familiar. Lunar regolith, on the other hand, is a dry, glassy substance pounded into dusty smithereens by eons of meteoritic bombardment. It's not going to respond to a shovel--or a scoop--like terra firma.

"To design lunar digging equipment, we need to predict the forces required to move a scoop or other implement through lunar regolith," says Allen Wilkinson, team leader of the ISRU (In-Situ Resource Utilization) Regolith Characterization team at the Glenn Research Center.

Surveyor 3 and a sister ship Surveyor 7 actually dug into the Moon and measured how hard their drive motors had to work to scoop, press, and scrape the soil. To interpret those measurements more than 40 years later, however, Wilkinson's team needs to know the dimensions of the Surveyor scoops. Unfortunately, they learned, the blueprints had been lost! Only a scoop itself could provide the answer.

That sent Wilkinson to Hutchinson, Kansas, in April 2007 to borrow the Surveyor 3 scoop from the Kansas State Cosmosphere in order to make detailed measurements.

Measuring the scoop, however, would prove to be no simple matter. You can't just lay a ruler along the scoop and read off the dimensions. Indeed, you can't touch it at all. The Surveyor 3 scoop is in an airtight triangular container, and NASA curators do not wish the scoop to be removed because handling in air will degrade the historical fidelity of the unique artifact.

So the Glenn team borrowed photogrammetry apparatus from the Kennedy Space Center. Photogrammetry is a technique of measuring objects strictly from photographs. They have a photographic studio setup with a white background. GRC team member Juan Agui, an expert in digging force experiments, photographed the scoop in its container next to a standard photogrammetry cube, which has a precise checkerboard pattern on it. Then, using software, Robert Mueller of the Kennedy Space Center extracted dimensions using mathematical triangulation, measuring from points on the scoop to points where corners of dark checks meet on the cube. The software was developed for the Columbia Accident Investigation Board activity.

"Photogrammetry is pretty good," Agui remarks. "We got measurements of the scoop accurate to 0.030 or 0.040 inch (~1 mm)."

They've since constructed a replica of the scoop and now they are using it to dig into simulated lunar regolith.

"Measurements of digging forces are underway," he says. The replicated scoop plunges into a rectangular "soil bed" filled with JSC-1a, a man-made moondust substitute that closely matches the known properties of lunar regolith, while a computer monitors bearing forces. "Our team is quite pleased to find that the measurements appear to be close to reproducing [the best] Surveyor 7 data from the Moon."

With this test bed in place, the team can, e.g., move forward to test alternate scoop designs and refine theories of lunar soil mechanics. "Obtaining the Surveyor replica really made the difference," says Agui.

The secrets of digging on the Moon are being revealed.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.