New Tekes-Funded Project Focuses on Development of Novel Optical Components and Technologies

VTT Technical Research Centre of Finland and Aalto University, together with a group of contributing local companies, are starting a new Tekes-funded project on optical switching and transmission technologies to improve the scalability and energy-efficiency of data centres and 5G networks where the volumes of data transfer grow exponentially.

The way we use and share information and entertainment content are changing from local media hardware into distributed content with on-line and mobile access. In entertainment, DVDs and CDs have already been replaced by streaming and on-demand movie services. Data storage and bookkeeping are moving into cloud with on-line mobile access and internet of things will soon connect everyday devices into the local or global network.

Already before the onset of this transition, the volume of data transfer was increasing exponentially and the capacity of the data centres was doubled every 18 months. In 2014 the data centres in EU alone consumed about 120 TWh of energy, roughly equivalent to the full capacity of fourteen 1 GW nuclear reactors.

With the current data centre networking technologies, addressing the exponential increase in data volume would lead to an enormous magnification of the cost.

The new Tekes-funded project, Optical Information Processing for Energy-Efficient Data Centres (OPEC), focuses on the development of novel optical components and technologies on VTT's proprietary silicon photonics platform, as well as new silicon wafer production and precision assembly concepts. This is done in close collaboration with Nokia, Rockley Photonics and other Finnish technology companies aiming to meet the industrial demands of data centres and 5G networks.

Future challenges are approached by developing graphene and other layered 2D material based active photonic components in collaboration between VTT and Aalto University to achieve performance beyond the theoretical limit of the traditional materials. The project also explores the feasibility of integrated photonics in analog signal transfer and manipulation, such as radio-over-fiber and microwave beam steering in mobile link stations.

The project is supported financially and technologically by Nokia, Rockley Photonics, Okmetic, nLight, Ginolis and Picosun. It is part of Tekes' 5th Gear programme that launched several new projects early 2016 in connection with Business from Digitalization call.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.