Posted in | News | Microscopy | NanoOptics

Novel Method to Measure Thickness of Graphene Using an Optical Microscope

The remarkable properties and subsequent applications of graphene have been well-documented since it was first isolated in 2004; however, researchers are still trying to find a quick, cheap and efficient way of measuring its thickness.

Graphene: pure carbon atoms arranged in hexagonal shapes

A group of researchers from China appear to have solved this problem by devising a universal method using just a standard optical microscope.

In a study published today, 16 November 2012, in IOP Publishing’s journal Nanotechnology, they have shown that the thickness of graphene, along with a host of other two-dimensional materials, can be obtained by measuring the red, green and blue components of light as they are reflected from the material’s surface.

The study shows that the contrast of red, green and blue values between the substrate on which the sample is placed and the sample itself increases with the thickness of the sample.

The method is fast, easily operated and requires no expensive equipment.

The researchers, from the Harbin Institute of Technology at Weihai and Southeast University, believe this is a significant contribution to the fundamental research and potential applications of materials, such as graphene, as many of their remarkable properties are reliant on the thickness of the material itself.

“In the past, methods for identifying the thickness of two-dimensional materials have been very expensive and have had a slow throughput. Our technique combines a common microscope with a simple bit of software, making it a very fast, cheap and efficient way of measuring thickness,” said co-author of the study Professor Zhenhua Ni.

The researchers tested their method by examining mechanically exfoliated graphene, graphene oxide, nitrogen-doped graphene and molybdenuym disulphide, all of which have attracted great interest due to their intriguing electrical, mechanical, thermal and optical properties.

A standard optical microscope was used to obtain optical images of the samples and a piece of software called Matlab was used to read the red, green and blue values at each pixel of the optical image.

Raman spectroscopy and atomic force microscopy were used to confirm the researchers’ thickness measurements.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.