Posted in | News

Researchers Illuminates How Environment Regulates Distributions of Ecological Species

Tiny photosynthetic plankton less than a millionth of a millimeter in diameter numerically dominate marine phytoplankton. Their photosynthesis uses light to drive carbon dioxide uptake, fueling the marine food web over vast areas of the oceans. A new study published in this week’s PLoS ONE by post-doctoral researcher Dr Christophe Six and a team of scientists from Mount Allison University, Sackville, New Brunswick, Canada, illuminates how the environment regulates the distributions of these ecologically important species.

Dr Doug Campbell, Canadian Research Chair in Environmental Processes and co-author explains, "Phytoplankton are entrained in the water column and are thus subject to rapid changes in light as they mix through the upper layer of the ocean."

Dr Christophe Six adds, “Phytoplankton need light for photosynthesis and survival, but surprisingly this light also inactivates a key component of the photosynthetic apparatus, photosystem II. This Photoinactivation of photosystem II decreases photosynthesis and can even kill cells, unless they can counteract the damage through repair, which requires nutrients.”

“We found the picophytoplankton species isolated from different regions of the ocean have different abilities for this repair, and therefore have different abilities to tolerate increases in light. Their repair capacities are consistent with the different light and nutrient regimes in their local environments; species from deep ocean regions with stable light and low nutrients have very limited repair capacity, but species from coastal regions with more variable light and higher nutrients are more able to cope with variable light through rapid repair.”

This result indicates that picophytoplankton species’ tolerance of exposures to high light can help to explain how these organisms are distributed throughout the ocean. The group measures the rates of photoinactivation and the rates of the counteracting repair in a wide variety of phytoplankton species, and next plans to contribute to ocean models to predict phytoplankton carbon cycling in response to future climate change.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.