The deuterium fluoride (DF) laser is a chemical laser formed by a mixture of fluorine and deuterium gas under controlled conditions. The wavelength of light produced by DF laser is longer than that of other conventional HF lasers, and hence it facilitates more effective laser transmission.
During its operation, ethylene is burned in the presence of nitrogen trifluoride in a combustion chamber, which produces free excited fluorine radicals. The mixture of deuterium and helium gas is then injected into an exhaust stream via a nozzle. The deuterium molecules react with the fluorine radicals to produce excited deuterium fluoride. The excited molecules further undergo stimulated emission in the optical resonating laser region.
Laser Properties
Laser Properties |
Laser type |
Chemical |
Pump source |
Chemical reaction |
Operating wavelength |
~3800 nm |
Applications
Since their invention in 1970, DF lasers have been widely used in military applications for developing air and missile defense weapon systems of high power because of their ability to rapidly discard waste heat by convective flow of exhaust gases and store high levels of energy.
The pulsed energy projectile and the tactical high energy lasers and the Mid-infrared advanced chemical laser used in army are of deuterium fluoride type.
Sources and Further Reading