Posted in | News | Optics and Photonics

Vibrationally Excited Hydrogen Production from Water Photochemistry Using the Dalian Coherent Light Source

Vibrationally excited molecular hydrogen is an essential species for determining the chemical composition in the interstellar medium.

Vibrational excited interstellar H2 has been detected in shock-heated gas and in photodissociation regions (PDRs) near hot stars, which was formed by collisions and fluorescence excitation in PDRs.

Recently, a research group led by Prof. YUAN Kaijun and Prof. YANG Xueming from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) demonstrated vibrationally excited H2 production from water photochemistry using the Dalian Coherent Light Source. This process represents a further source of vibrationally excited H2 observed in the interstellar medium.

Their findings were published in Nature Communications on Nov. 2.

The experimental results indicated that all of the H2 fragments identified in the O(1S) + H2(X1Σg+) channel following vacuum ultraviolet photodissociation of H2O in the wavelength range of λ=~100-112 nm were vibrationally excited. In particular, more than 90% of H2(X) fragments populated in a single vibrational state v=3 at λ~112.81 nm.

The estimated cross section for forming H2(v>0) fragments at λ~107.5 nm was determined to be ~3.2×10-18 cm2.

The abundance of water molecules and vacuum ultraviolet photons in the interstellar space suggested that the contributions of these H2(v>0) sources from water photochemistry could be significant and thus should be recognized in appropriate interstellar chemistry models.

This research was supported by the Strategic Priority Research Program of CAS, Chemical Dynamics Research Center, and the National Natural Science Foundation of China.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.