Posted in | News | Laser | Optics and Photonics

Low-Cost Approach to Improve MEH-PPV Polymer’s Ability to Confine Light

Researchers from North Carolina State University have come up with a low-cost way to enhance a polymer called MEH-PPV's ability to confine light, advancing efforts to use the material to convert electricity into laser light for use in photonic devices.

"Think of a garden hose. If it has holes in it, water springs out through a million tiny leaks. But if you can eliminate those leaks, you confine the water in the hose and improve the water pressure. We've plugged the holes that were allowing light to leak out of the MEH-PPV," says Dr. Lewis Reynolds, a teaching associate professor of materials science and engineering at NC State and co-author of a paper describing the research.

MEH-PPV is a low-cost polymer that can be integrated with silicon chips, and researchers have long sought to use the material to convert electricity into laser light for use in photonic devices such as optical amplifiers and chemical sensors. However, attempts to do this have failed because the amount of electricity needed to generate laser light in MEH-PPV was so high that it caused the material to degrade.

Now researchers have developed an inexpensive way to confine more light in the material, which lowers the energy threshold needed to produce focused laser light by 50 percent. The researchers did this by sandwiching the MEH-PPV between two materials that have matching indices of refraction, efficiently reflecting light back into the MEH-PPV and preventing light from escaping. This results in lower thresholds for laser light.

"This approach is fairly inexpensive and could also be easily scaled up for large-scale processing," Reynolds says.

The "sandwich" also makes the material more stable by limiting the MEH-PPV's exposure to oxygen. This makes the material less subject to degradation due to photo-oxidation, which occurs when materials are exposed to both light and oxygen.

"This is a meaningful step forward for low-cost fabrication of these devices, but further optimization is required," says Dr. Zach Lampert, a former Ph.D. student at NC State and lead author of the paper. "We're working on that now."

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.