"TIGA," the new high-tech imaging center at the University of Heidelberg founded in cooperation with the Japanese company Hamamatsu, provides deep insights: a high-tech robot makes it possible for the first time to automatically reproduce and evaluate tissue slices only micromillimeters thick - an important aid for researchers in understanding cancer or in following in detail the effect of treatment on cells and tissue.
Researchers at the U.S. Department of Energy's (DOE) Oak Ridge National Laboratory (ORNL) have won six R+D 100 Awards for innovative technologies in areas ranging from national security to the advanced materials industry.
A new paper by a team of researchers led by University of Notre Dame physicist Bolizsár Jankó provides an overview of research into one of the few remaining unsolved problems of quantum mechanics.
Nikon, Inc. today introduced the new PC-E Micro NIKKOR 45mm f/2.8D ED and PC-E Micro NIKKOR 85mm f/2.8D lenses, expanding a series of lenses that allow photographers to effectively correct perspective and/or depth-of-field to push creative boundaries.
In a paper published online June 29 in the journal Nature Materials, EPFL professor Michael Graetzel, Shaik Zakeeruddin and colleagues from the Changchun Institute of Applied Chemistry at the Chinese Academy of Sciences have achieved a record light conversion efficiency of 8.2% in solvent-free dye-sensitized solar cells. This breakthrough in efficiency without the use of volatile organic solvents will make it possible to pursue large scale, outdoor practical application of lightweight, inexpensive, flexible dye-sensitized solar films that are stable over long periods of light and heat exposure.
Engineers working in optical communications bear more than a passing resemblance to dreamers chasing rainbows.
The odd behavior of a molecule in an experimental silicon computer chip has led to a discovery that opens the door to quantum computing in semiconductors.
Scientists at Harvard's School of Engineering and Applied Sciences (SEAS), collaborating collaborating with researchers from the German universities of Jena, Gottingen, and Bremen, have developed a new technique for fabricating nanowire photonic and electronic integrated circuits that may one day be suitable for high-volume commercial production.
Researchers have shown that a new class of ultraviolet photodiode could help meet the U.S. military's pressing requirement for compact, reliable and cost-effective sensors to detect anthrax and other bioterrorism agents in the air.
The Center for Nanoscale Materials' (CNM) newly operational Hard X-ray Nanoprobe at the U.S. Department of Energy's (DOE) Argonne National Laboratory is one of the world's most powerful x-ray microscopes.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.